Import Vector Machine Based Hyperspectral Imagery Classification
نویسندگان
چکیده
منابع مشابه
Hyperspectral image classification and application based on relevance vector machine
The relevance vector machine (RVM) is used to process the hyperspectral image in this paper to estimate the classifiers precisely in the high dimensional space with limited training samples. The detail of RVM is firstly discussed based on the sparse Bayesian theory. Then four multi-class strategies are analyzed, including One-vs-All (OAA), One-vs-One (OAO) and two direct multi-class strategies....
متن کاملCommon Spatial Patterns Feature Extraction and Support Vector Machine Classification for Motor Imagery with the SecondBrain
Recently, a large set of electroencephalography (EEG) data is being generated by several high-quality labs worldwide and is free to be used by all researchers in the world. On the other hand, many neuroscience researchers need these data to study different neural disorders for better diagnosis and evaluating the treatment. However, some format adaptation and pre-processing are necessary before ...
متن کاملRelevance Vector Machine for Efficient Classification of Scattered Patterns in Hyperspectral Imagery
Analysis of hyperspectral data for defining the land-cover classes through classification techniques, in particular for small patches and scattered land-covers, is not a trivial task. Factors such as high spatial variability of landcover signatures, the “boundary effect” between neighboring land-covers, and the curse of dimensionality make this task more challenging [1]. As the integrity of a l...
متن کاملSensitivity Analysis of Support Vector Machine in Classification of Hyperspectral Imagery
Nowadays by developing hyperspectral sensor technology, it is possible to simultaneously capture image with hundreds of contiguous narrow spectral bands. Increasing spectral bands provide more information and seem to improve classification accuracy. Nevertheless limited training samples lead to poor parameter estimation of statistical classifiers which is called Hughes phenomena. Recently Suppo...
متن کاملSemi-Supervised Based Hyperspectral Imagery Classification
Hyperspectral imagery classification is a challenging problem. Wherein, the high number of spectral channels and the high cost of true sample labeling greatly reduce the classification precision. In this paper, we proposed a semi-supervised method, which combine linear discriminant analysis and manifold learning, to improve the precision of hyperspectral imagery classification. Experimental res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2017
ISSN: 1877-0509
DOI: 10.1016/j.procs.2017.03.184